

White Sands Complex (WSC) TCP/IP Data Interface Service Capability (WDISC) Project Review

Friday, July 24, 1998

Building 12 GSFC, Room N112, 9:00 A.M.

WDISC Project Review Agenda

Project Overview Reine Chimiak

Requirements Baseline / Frank Weinstein

Operational Concept and

Scenarios

Redundancy Capability Andre Fortin

Testing Tom Russell

Summary Reine Chimiak

PTP Demonstration Mary Ellen Orsini

Project Overview

- Introduction
- Objective
- Concept Architecture
- Approach
- Schedule and Interdependencies
- Status

Introduction

- NISN is in process of replacing the current 4800-bit-block point to point serial network with an IP based system
- Some future low data rate, limited support SN customers have been requesting TCP/IP supported data services
 - New Millennium Program Earth Orbiter-1 (NMP/EO-1)
 - Far Ultraviolet Spectroscopy Explorer (FUSE), and Gravity Probe B Relativity (GP-B)

The WDISC is being implemented to serve customers who require TCP/IP access to the WSC for telemetry and command processing via the closed IONET

Objective

The overall objective of the WDISC effort is to provide direct TCP/IP based telemetry and command services on the closed IONET from the WSC

- Specific strategies in support of this objective include:
 - Support testing and operational phases of the EO-1 and GP-B missions.
 - Ensure that the design allows for, to the extent possible, future expansion and enhancement.
 - Provide data services without requiring the need for mission unique equipment at WSC.
 - Incorporate and evolve SN support of CCSDS standards and services.

Approach

- Project Planning and Requirement Compilation
- Vendor Proposal Analysis
- Programmable Telemetry Processors (PTP) Procurement Process
- WDISC Project Review and Operations Concept Development
- PTP Configuration and Testing at GSFC
- Equipment Shipping and Installation at WSC
- Acceptance Testing and Transition to Operations

Schedule and Interdependencies

Status of Documentation

Status

WDISC Project Management Plan	*Complete
WDISC System Requirements	*Complete
WDISC Operations Concept	*Complete
WDISC Service Specification	*Complete
WDISC Security Evaluation	Complete
Startup Procedures (Installation	August 98
Instructions, Configuration Files)	_
Test Procedures	August 98

*Available on line at URL: http://nmsp.gsfc.nasa.gov/WDISC

Note on Configuration Management (CM): Code 451, SN CCB will be used for CM of the WDISC requirements. All other documentation shall be controlled by the WDISC Team Lead.

User's Guide

September 98

Status of Developmental Activities

Activity Status

Timer Server/ Scheduler GUI unit tested

Build PTP Configurations August 98

Redundancy partially tested

Requirements Baseline/Operations Concept and Scenarios

- WDISC Configuration
- Scheduling
- Real-Time Processing
- Data Playback
- WDISC Capacities

Configuration

- WDISC is located at WSC
 - Prime and backup at WSGT and at STGT
- Three primary interfaces:
 - Forward and return service data connections with WSC via LI ports "hardwired"
 - Forward and return service data TCP/IP connections with customer via Closed IONET
 - Operational control TCP/IP connection with NCC via Closed IONET

Scheduling

- For each customer, a set of PTP "desktops" must be developed
 - PTP desktop specifies the configuration of a PTP telemetry board, including
 - Processing specification for each PTP module
 - Relationships of the modules
- Customer scheduling process is via the NCCDS, and is the same as for any SN customer
- Once per day, the NCC Scheduler will:
 - Read SN schedule from NCCDS
 - Filter to find events supported by WDISC
 - Enter daily WDISC schedule and upload to PTP Timer software within WDISC

Scheduling GUI

Real-Time Data Flows

- At scheduled service start time, PTP Timer software initiates PTP desktop
- Customer establishes TCP/IP connection
- Return service data flows from ground terminal LI port through WDISC and through IONET to customer IP address
- Forward service data flows from customer through IONET to WDISC IP address and through WDISC to ground terminal LI port

TCP/IP Connections

Service	User Interface Channel	Domain Name XXX.ops.nascom.nasa.gov	Port
Forward-1	W 30	XXX=scptp1 or scptp2	10000
Return-1	W 55	XXX=scptp1 or scptp2	10000
Control-1		XXX=scptp1 or scptp2	11000
Forward-2	W 31	XXX=scptp1 or scptp2	10001
Return-2	W 56	XXX=scptp1 or scptp2	10001
Control-2	_	XXX=scptp1 or scptp2	11001
Forward-3	W 32	XXX=scptp1 or scptp2	10002
Return-3	W 57	XXX=scptp1 or scptp2	10002
Control-3		XXX=scptp1 or scptp2	11002
Forward-4	W 40	XXX=wcptp1 or wcptp2	10000
Return-4	W 69	XXX=wcptp1 or wcptp2	10000
Control-4	_	XXX=wcptp1 or wcptp2	11000
Forward-5	W 41	XXX=wcptp1 or wcptp2	10001
Return-5	W 79	XXX=wcptp1 or wcptp2	10001
Control-5		XXX=wcptp1 or wcptp2	11001
Forward-6	W 42	XXX=wcptp1 or wcptp2	10002
Return-6	W 80	XXX=wcptp1 or wcptp2	10002
Control-6	_	XXX=wcptp1 or wcptp2	11002

Real-Time Monitoring and Fault Isolation

- NCC Operator (PA or TM)
 - Works with CCTV display and dedicated keyboard and mouse at OCR console
 - Runs COTS PTP client software on a Windows NT machine
 - Logs on an active PTP at WSC
 - Uses PTP GUI to display status
 - If failure is detected, can use GUI to restart PTP server software or reset PTP desktop
- WSC operators also have capability to monitor and restore PTP services (as backup to NCC)

Data Playback

- If specified by desktop, WDISC will record return service data.
- A return service data log file will be created at service start time and closed at service stop time.
- At any time after file is closed, customer can access return service data log file via FTP.

WDISC Capacities

- Three forward/return service data channel pairs at WSGT
- Three forward/return service data channel pairs at STGT
- Return service data rate up to one Mbps
- Forward service data rate up to one Mbps

Redundancy Capability

- Overview
- Forward Service
 - Configuration
 - Operations
- Implementation

Redundancy -- Overview

- Basic Principles
 - MOC has responsibility for recognizing failure condition and carrying out failover procedure
 - NCC Operator monitors status, as needed, and assists in fault isolation and restoration of full service capability
- Return Service Configuration
 - When NCCDS schedules a return LI port, this also allocates a PTP board in both the prime and backup WDISC
 - Customer can connect to either or both
 - Absence of data prior to scheduled service stop time (or expected LOS) would be primary indication of possible WDISC failure

Redundancy -- Overview (continued)

- Forward Service Configuration
 - When NCCDS schedules a forward LI port, this also allocates a PTP board in both the prime and backup WDISC
 - Provide customer-controlled switches for forward service
 - Customer can connect to either PTP board or both, but can configure only one to flow forward service data
 - Customer has two socket connections, data and control/status
 - For control, customer sends ASCII string to switch
 - For status, customer can listen for "heartbeat" (optional)
 - Loss of "heartbeat" status prior to scheduled service stop time would be primary indication of possible WDISC failure

Redundancy -- Overview (continued)

- Forward Service Configuration (continued)
 - Each "desktop" will have "relay" modules to pass onto the controllers the commands to switch
 - Totally COTS, but not perfect: single point of failure for switch (MTBF 150KHrs), controller (MTBF 105KHrs), bridge (MTBF XXXKHrs)

Redundancy -- Forward Service Operations

- At event start
 - Customer connects to data port and control/status port of PTP
 - Customer sends unique character string to switch forward link
- During event
 - Customer pauses for length of time necessary for idle pattern
 - Customer sends command data, monitors "heartbeat"
- If failure:
 - Customer disconnects data and control/status ports
 - Connects to backup PTP, reconfigures forward data switch, and tries again

WDISC Acceptance Testing Agenda

- Network Integration and Analysis (NIA) Role
- Test Approach
- Training
- Test Deliverables and Schedules
- Operations Transition Tasks

NIA Role

- Plan and Conduct Acceptance Testing as well as Customer Interface Testing
- Analyze System Operability
- Support Transition to Operations

Test Approach

- Integration and System Testing by Engineering Personnel
- NCC Operations Evaluation Test Phase
 - Operator Interface Test
 - Functional Test
 - Performance Test
 - Operator Training
- Network Confidence Phase
 - NCC PTP Configuration Testing
 - Data Flows
 - Conducted Utilizing Both Ground Stations
 - Forward/Return and Playback

Test Approach (continued)

- End-to-End
 - Conducted Utilizing Both Ground Stations at the WSC
 - Involve Simulated MOC Forward/Return and Playback Testing
 - Include NCC/MOC Interface
 - Customer MOC Participation TBD
 - Load Testing
 - Simultaneous Support for an Extended Period of Time
 - Failover Capability

Training

- Test Personnel NIA
 - TCP/IP Courses (Self-paced)
 - PTP Classes (NTTF)
 - WDISC Equipment Demonstration
- Operations Personnel NCC/WSC
 - TCP/IP Courses (Self-paced)
 - PTP Classes (NTTF)
 - Operations Evaluation Testing and Test Support

Test Deliverables and Schedule

- Test Plan
 - Draft by 8/12 and Final by 8/26
 - Test Requirements Mapping
- Briefing Messages
 - Issued 3 Business Days Prior to Test Start
- Conduct Testing Between 8/27 through 9/23
 - 10 Business Days Notice Required for Each Network Test
- NIA Will Generate a Test Results Report within 24 hrs. after Test
- Tracking Trouble Reports (TTRs)

Operations Transition Tasks

- Examine Operational Proficiency Metrics and Negotiate as Needed
- Assess Staffing
- Certification Requirements or Updates for Operations Personnel
- Operations Procedures
 - LOPs/OIPs/SOPs/SNUG
- Maintenance Plan

Issues

- PTP architecture requires that forward and return service LI ports be scheduled in pairs.
- Manual scheduling interface with NCCDS should be satisfactory for initial customers.
- No real-time service reconfiguration capability.
- Potential impact on Closed IONET bandwidth.
- Open IONET PTP Services

Summary

A version of the review is available from the WDISC Web page at URL:

http://nmsp.gsfc.nasa.gov/WDISC

Comments pertaining to this presentation should be addressed to:

Reine.Chimiak@gsfc.nasa.gov

with cc to:

Dave.Littmann@gsfc.nasa.gov

